Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

Курс лекций по строительной механике. Примеры решения задач

Определение перемещений. Интеграл Мора

Рассмотрим теперь два состояния системы, показанные на рис. 5.12. В первом из них на систему действует произвольный комплекс внешних нагрузок, во втором - только единичный силовой фактор – сила .

 Состояние m Состояние k

 


Составим выражение возможной работы, совершаемой заданным комплексом внешних и внутренних сил состояния k на перемещениях состояния m. Согласно принципу возможных перемещений, должно удовлетворяться равенство

 . (5.23)

При этом возможная работа внутренних сил состояния k на пере-мещениях состояния m

.  (5.24)

Возможная работа внешних сил состояния k на перемещениях состояния m будет равна

. (5.25)

Подставляя в выражение (5.23) выражения (5.24) и (5.25), после арифметических преобразований получим

. (5.26)

Черта над обозначениями усилий означает, что эти усилия найдены от действия единичного силового фактора. Таким образом, перемещения от любой нагрузки можно выразить через внутренние усилия, возникающие в этой системе от действия на неё заданной внешней нагрузки и от действия на неё единичного силового фактора. При этом направление единичного силового фактора совпадает с направлением искомого перемещения.

Правило П. Верещагина На практике часто встречаются случаи, когда на отдельных участках стержни имеют одинаковые физические и геометрические параметры, а одна из подынтегральных функций изменяется линейно.

Определение перемещений от действия температуры

Понятие о статической неопределимости Статически неопределимыми называются такие стержневые системы, для оценки напряжённо-деформированного состояния которых недостаточно трёх уравнений статики. Для того чтобы осуществить оценку напряжённо-деформированного состояния таких систем, необходимо составить дополнительные уравнения.

Основная система метода сил Любой способ раскрытия статической неопределимости предполагает выбор для заданной системы основной системы. В методе сил основную систему выбирают из заданной, устраняя «лишние» связи. За «лишние» могут быть приняты как внешние, так и внутренние связи. Внешние связи являются опорными связями, а внутренними являются связи, препятствующие взаимному перемещению двух смежных сечений при мысленном рассечении стержня или удалении из него шарнира.

Определение коэффициентов канонических уравнений Вычисление коэффициентов при неизвестных системы канонических уравнений метода сил и её грузовых членов, представ­ляющих единичные и грузовые перемещения, проводится с по­мощью известных методов определения перемещений, изложенных в предыдущем разделе.

Построение эпюр внутренних усилий в заданной системе Основная система, в которой определены значения всех «лишних» неизвестных, представляет собой статически определимую систему с действующими на неё заданной внешней нагрузкой и усилиями . Для пoстроения эпюр внутренних усилий M, N, Q составляются аналитические выра­жения этих внутренних усилий для характерных участков рассчитываемой конструкции.

Проверки правильности построенных эпюр

Расчёт статически неопределимой рамы на осадку опор Опорные закрепления любой строительной конструкции могут перемещаться. Чаще всего это может проявляться при осадке фундаментов. От этих перемещений статически неопределимая система деформируется и в её элементах возникают внутренние усилия. Поэтому необходимо производить расчёт таких систем c учётом перемещений их опорных связей.

Если определяется линейное перемещение (рис. 5.13), то в единичном (дополнительном) состоянии к системе, в той точке, перемещение которой определяется, прикладывается сила . Если определяется угловое перемещение (рис. 5.14), то к тому сечению, угол поворота которого определяется, прикладывают сосредоточенный момент

 


Если определяют взаимное линейное смещение (рис. 5.15) двух точек системы, то в единичном состоянии к этим точкам по линии искомого смещения прикладывают единичные сосредоточенные силы, вектор которых направлен в разные стороны.

 


Если определяют взаимное угловое перемещение двух сечений, то в единичном состоянии к этим двум сечениям (рис. 5.16) прикладывают сосредоточенные единичные моменты, вектор которых направлен в сторону возможного взаимного углового перемещения.

В общем виде формула для определения перемещений принимает вид выражения (5.26), называемого интегралом Мора.

Порядок определения перемещений:

 находят аналитические выражения для определения внутренних усилий при действии на систему заданной внешней нагрузки (действительное состояние системы – состояние m);

 по направлению искомого перемещения прикладывают соответствующий искомому перемещению единичный силовой фактор, от действия которого находят аналитическое выражение внутреннего силового фактора (единичное состояние системы – состояние k);

 полученные аналитические выражения внутренних силовых факторов подставляют под знаки интегралов и осуществляют интегрирование, результатом которого является определение величины искомого перемещения.

При этом следует отметить, что если знак найденного перемещения окажется отрицательным, то это означает, что действительное направление искомого перемещения направлено в противоположную сторону действия единичного силового фактора.


На главную