Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

Лабораторные работы по электротехнике

Работа и мощность тока. Закон Джоуля-Ленца.

 Определим работу, совершаемую постоянным током в проводнике, имеющем сопротивление R и находящемся под напряжением . Так как ток представляет собой перемещение заряда q под действием поля, то работу тока можно определить по формуле . Учитывая формулу  и закон Ома, получим , или , или , где t - время протекания тока. Поделив обе части равенства на t, получим выражения для мощности постоянного тока N

. Работа тока в системе единиц СИ измеряется в доулях (Дж), а мощность - в ваттах (Вт). На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1Вт×ч - работа тока мощностью 1Вт в течение одного часа. 1Вт×ч=3.6×103 Дж.

 Опыт показывает, что ток всегда вызывает некоторое нагревание проводника. Нагревание обусловлено тем, что кинетическая энергия движущихся по проводнику электронов (т.е. энергия тока) при каждом их столкновении с ионами металлической решетки переходит в теплоту Q. Если ток идет по неподвижному металлическому проводнику, то вся работа тока расходуется на его нагревание и, следуя закону сохранения энергии, можно записать . Данные соотношения выражают закон Джоуля-Ленца. Впервые этот закон был установлен опытным путем Д.Джоулем в 1843 г. и независимо от него Э.Ленцем в 1844 г. Применение теплового действия тока в технике началось с открытия в 1873 г. русским инженером А.Ладыгиным лампы накаливания.

Электрические токи в металлах, вакууме и полупроводниках Опытные доказательства электронной проводимости металлов. Электронная теория проводимости металлов была впервые создана в 1900 г. немецким физиком П.Друде и впоследствии разработана нидерландским физиком Х.Лоренцем. Основным ее положением является то, что носителями тока в металлах служат свободные электроны. Это подтверждалось рядом классических опытов.

Работа выхода электрона из металла. Контактная разность потенциалов. При комнатной температуре практически все свободные электроны находятся внутри металла, так как их удерживает притяжение положительных ионов. Однако отдельные электроны с достаточно большой кинетической энергией могут выйти из металла в окружающее свободное пространство (например, в вакуум)

Электрический ток в вакуумном диоде

Элементы современной квантовой или зонной теории твердых тел. Главной причиной неудовлетворительности классической теории электропроводности твердых тел является то, что в ней не учтены квантовые свойства электрона. Эти свойства были обнаружены при изучении строения атомов и движения микрочастиц в силовых полях, что привело к созданию  в начале двадцатого века квантовой или волновой механики. Согласно этой квантовой  теории поведение микрочастиц по сравнению с поведением макрочастиц отличается рядом особенностей:

На тепловом действии тока основан целый ряд электрических приборов и установок: тепловые электроизмерительные приборы, электропечи, электросварочная аппаратура, бытовые электронагревательные приборы - чайники, кипятильники, утюги. В пищевой промышленности широко применяется метод электроконтактного нагрева, заключающийся в том, что электрический ток, проходя через продукт, обладающий определенным сопротивлением, вызывает его равномерное нагревание. Например, для производства колбасных изделий через дозатор фарш поступает в формы, торцевые стенки которых служат электродами. При такой обработке обеспечивается равномерность нагрева по всему объему продукта, возможность поддержания определенного температурного режима, наивысшая биологическая ценность изделия, наименьшие длительность процесса и расход энергии.

 Определим удельную тепловую мощность тока w, т.е. количество теплоты, выделяющееся в единице объема за единицу времени. Выделим в проводнике элементарный цилиндрический объем dV с поперечным сечением dS и длиной dl параллельной направлению тока, и сопротивлением , . По закону Джоуля-Ленца, за время dt в этом объеме выделится теплота . Тогда и, используя закон Ома для плотности тока  и соотношение , получим . Эти соотношения выражают закон Джоуля-Ленца в дифференциальной форме.

Правила Кирхгофа для разветвленных цепей.

 До сих пор нами рассматривались простейшие электрические цепи, состоящие из одного замкнутого неразветвленного контура. На всех его участках силы тока одинаковы. Расчет I, R, e в такой цепи выполняется с помощью законов Ома.

Рис.2.2.Разветвленная электрическая цепь.

  Более сложной является разветвленная электрическая цепь, состоящая из нескольких замкнутых контуров, имеющих общие участки. В каждом контуре может быть несколько источников тока. Силы тока на отдельных участках замкнутого контура могут быть различными по величине и направлению (рис.2.2). В 1847 г. Г.Кирхгоф сформулировал два правила, значительно упрощающих расчет разветвленных цепей.

Первое правило Кирхгофа: алгебраическая сумма сил токов в узле равна нулю: . Узел - точка цепи, в которой сходятся не менее трех проводников. В электрической цепи на рис.2.2 имеются два узла А и В. Ток, входящий в узел, считается положительным, выходящий - отрицательным. Например, для узла А первое правило Кирхгофа следует записать .

Первое правило выражает закон сохранения электрического заряда, так как ни в одной точке цепи они не могут возникать или исчезать.

Второе правило Кирхгофа относится к любому замкнутому контуру, выделенному в разветвленной цепи: алгебраическая сумма произведений токов на сопротивления, включая и внутренние, на всех участках замкнутого контура равна алгебраической сумме электродвижущих сил, встречающихся в этом контуре . Контур ‑ это замкнутый участок схемы, по которому можно пройти и вернуться в исходную точку. Второе правило Кирхгофа получается из закона Ома, записанного для всех участков от узла до узла (ветвей) разветвленной схемы. В электрической цепи на рис.2.2 имеются три контура: AMNBA, CABDC, CMNDC. При этом, токи Ii в ветвях контура, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а направленные навстречу обхода - отрицательными. Э.д.с., проходимые от «+» к «-» считаются положительными и наоборот. В рассматриваемой электрической цепи (рис.2.2) выберем обход контуров по часовой стрелке и запишем для них уравнения по II правилу Кирхгофа: для AMNBА ; для CABDС ; для CMNDС  . В данном примере внутренними сопротивлениями источников тока пренебрегаем. Первое и второе правила Кирхгофа позволяют составить систему линейных алгебраических уравнений, которые связывают параметры (I, R, ) и позволяют, зная одни, найти другие.

 Простые электрические цепи имеют очень большое практическое применение. В повседневной жизни полезно знать, как подключить динамики или проигрыватель к стереосистеме, как подсоединить сигнализацию для охраны или автомобильный кассетный Подпись:  
Рис.2.3. а) Последовательное соеди¬нение сопротивлений; б) Параллельное соединение со¬противлений.
проигрыватель, как зарядить аккумуляторы или осветить новогоднюю елку.

 Большинство электрических цепей содержит комбинацию последовательно или параллельно подключенных резисторов (резистор - это элемент цепи, обладающий только сопротивлением). Полное сопротивление участка цепи определяется отношением падения напряжения на нем к величине силы тока . При последовательном соединении (рис.2.3 а) через все резисторы течет один и тот же ток. При параллельном соединении (рис.2.3 б) полный ток равен сумме токов, текущих в отдельных резисторах.

При последовательном соединении падение напряжения на участке АВ равно , т.е. сумме падений напряжения на трех резисторах. Разделим обе части равенства на I и получим , т.е. . Таким образом, полное сопротивление участка цепи, состоящего из последовательно соединенных резисторов, равно их алгебраической сумме.

 При параллельном соединении (рис..2.3 б) мы имеем . Разделим обе части равенства на U, где U - падение напряжения на участке цепи АВ, причем , и получим . Из этого равенства следует . Величина обратная полному сопротивлению параллельно соединенных резисторов равна алгебраической сумме величин их обратных сопротивлений .

 В электрическую цепь может быть включено регулируемое (изменяющееся с помощью специального движка), сопротивление, которое называется реостатом. По назначению реостаты делятся на пусковые, служащие для ограничения силы тока во время пуска двигателей, и регулирующие - для регулировки силы тока в цепи (постепенное снижение освещенности в театральных залах), регулировки скорости вращения электродвигателей и т.д. Реостат может быть использован в качестве так называемого датчика перемещения. В автоматических регуляторах уровня жидкости в резервуарах применяется поплавково-реостатный датчик. Специальный поплавок крепится к движку реостата. Изменение уровня жидкости сдвигает поплавок, изменяет сопротивление реостата, и следовательно, силы тока в цепи, величина которого дает информацию об уровне.


На главную