А если завтра контрольная?


Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

Криволинейный интеграл второго рода

Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы   при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

Напрвленные отрезки обозначим вектором , величину силы F в точке Мj обозначим Ft. Тогда скалярное произведение Fi • Mt - приближённое выражение работы силы  вдоль дуги Mi-1Mi Работа на всей кривой MN

Пусть - проекции вектора на оси координат, Δхi, Δуi, - проекции вектора . Запишем скалярное произведение в формуле (33) через проекции векторов:

Предел интегральной суммы (34) при стремлении к нулю наибольшей из длин частичных дуг кривой MN (n→∞) называется криволинейным интегралом от функций Р(х,у), Q(x,y) вдоль кривой MN по координатам х, у (иначе - криволинейным  интегралом второго рода). Обозначается такой интеграл

 и численно равен работе силы  на пути MN.

Криволинейные интегралы второго рода обладают такими же свойствами 1, 2, как и интегралы первого рода. В отличие от последних они зависят от направления обхода кривой. Если изменить направление обхода, то интеграл меняет знак:

Если контур интегрирования L замкнут, то положительным направлением обхода считается движение против часовой стрелки. При этом область, заключённая внутри контура остаётся слева по ходу движения.

Чтобы вычислить криволинейный интеграл второго рода, его нужно преобразовать в определённый с помощью уравнения кривой интегрирования. При этом:

если кривая MN задана уравнением у=у(х), то

если кривая MN задана уравнением х = х (у), то

если кривая MN задана параметрическими уравнениями х = х (t), у=у(t) при перемещении из точки М в точку N параметр t меняется от α до β, то

Важно подчеркнуть, что в нижнем пределе определённых интегралов (35) и (36) стоит координата точки начала, а в верхнем пределе - координата точки конца кривой интегрирования.

Криволинейный интеграл второго рода может быть задан на пространственной кривой, и тогда он имеет вид

Его можно преобразовать в определённый интеграл, если кривая интегрирования

задана параметрическими уравнениями х = х (t), у=у(t), z=z(t).

Признак сравнения в предельной форме. Пусть неотрицательные функции f(x) и g(x) интегрируемы по любому отрезку [a, b] и пусть существует конечный . Тогда несобственные интегралы и сходятся или расходятся одновременно.
Док-во. Так как функции неотрицательны, то K > 0. По определению предела для существует такое значение x0, что при x > x0 выполняется . Дальше рассуждения простые: пусть a1 = min{a, x0}; если сходится , то сходится , тогда, по теореме сравнения, сходится сходится сходится. Если расходится , то расходится , тогда, по теореме сравнения, расходится расходится расходится. Случаи, когда сходится или расходится , рассмотреть самостоятельно.
Сравнение интеграла со "стандартным" интегралом в предельной форме позволяет сформулировать такое правило: если при неотрицательная функция f(x) - бесконечно малая порядка малости выше первого по сравнению с , то сходится; если f(x) не является бесконечно малой или имеет порядок малости единица или ниже, то интеграл расходится.


На главную