А если завтра контрольная?


Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

Поверхностный интеграл первого рода

Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности). Производя относительно поверхности S и функции f(x,y,z) действия, подобные действиям при составлении суммы (1), составим сумму

где  п - число частей, на которые разделена поверхность S; произвольная точка, взятая в i -ой части; ΔSi - площадь i -ой части.

Поверхностный интеграл первого рода от функции f(x, у, z) по поверхности S определяется как предел

Поверхностный интеграл 1 -го рода обладает такими же свойствами, как и другие, рассмотренные интегралы. Интеграл не зависит от выбора стороны поверхности интегрирования.

Чтобы вычислить поверхностный интеграл первого рода, его нужно преобразовать в двойной интеграл с использованием уравнения поверхности S.

Так, если поверхность S задана уравнением z= F(х,у), то дифференциал площади определяется по формуле

Поверхностный интеграл по S равен двойному интегралу по области Dxy, которая является проекцией поверхности S на координатную плоскость хОу:

С помощью поверхностного интеграла первого рода можно вычислить:

1) площадь поверхности S

2) массу материальной поверхности с распределённой плотностью

3) координаты центра масс, моменты инерции материальной поверхности вычисляются по формулам, аналогичным (6) и (7).

Пример 3.

 Вычислить массу поверхности S с распределённой плотностью

μ = 4- z. Поверхность задана уравнениями

Рис.9- к примеру 3

РЕШЕНИЕ Поверхность S - часть цилиндрической поверхности с образующей, параллельной оси Ох (см. рисунок 22), она однозначно проектируется на плоскость хОу в прямоугольную область

Поверхность задана уравнением, которое запишем в виде

и определим дифференциал площади

Поверхностный интеграл второго рода

К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости.

Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной. Поверхностный интеграл 2-го рода имеет вид

где - скалярное произведение, в котором - единичный вектор нормали к заданной стороне поверхности S в произвольной точке (S - поверхность интегрирования). Применяется и другое обозначение векторной функции, а именно . Если векторные функции задать своими координатами

Примеры решения задач

1. Указания к выполнению задания 1

Область интегрирования D задана уравнениями границ. По заданным уравнениям нужно нарисовать кривые или прямые линии, которые образуют замкнутую область D. Затем нужно выбрать порядок интегрирования и применить формулу (8) или (9), как это выполнено в примере 1. Достаточно выполнить интегрирование только по одной из двух формул.

2. Примеры выполнения заданий 2 и 3

В заданиях 2 и 3 требуется вычислить двойные интегралы, для чего вначале нужно изобразить область интегрирования D.

Указания к изображению области интегрирования D.

Уравнение  - уравнение окружности радиуса R с центром в точке (х0,у0).

3. Пример выполнения задания 4

Вычислить с помощью тройного интеграла обьём тела, ограниченного указанными поверхностями. Сделать рисунок данного тела и его проекции на плоскость хОу.

Примечания к построению рисунка тела. Плоскость в пространстве задаётся общим уравнением  вида

Ах + By + Cz + D = 0. Если D=0, то плоскость проходит через начало координат. Если равен нулю один из коэффициентов А,В.С, то плоскость параллельна оси отсутствующей переменной. Если два коэффициента из трёх (А, В, С) равны нулю, то плоскость параллельна координатной плоскости, проходящей через оси отсутствующих переменных.

Если уравнение поверхности не содержит одну из трёх независимых переменных, это является признаком того, что поверхность - цилиндрическая, с образующей, параллельной оси отсутствующей переменной. Заданное уравнение при этом -уравнение направляющей линии.

Уравнение сферы радиусом R с центром в начале координат имеет вид:

 РЕШЕНИЕ Интеграл по ломанной линии MNV вычисляем суммой двух интегралов: по отрезку прямой MN и отрезку NV. Определим уравнение прямой интегрирования MN, как уравнение прямой, проходящей через две точки

Таким образом

Работу вычисляем по формуле

где

  Криволинейный интеграл вычисляем по формуле (35):

Несобственные интегралы от неограниченных функций (несобственные интегралы второго рода).

Определение несобственного интеграла от неограниченной функции.
Особенность на левом конце промежутка интегрирования. Пусть функция f(x) определена на полуинтервале (a, b], интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку [a, b] называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится.

 

Применение формулы Ньютона-Лейбница. Если для функции f(x) на полуинтервале (a, b] существует первообразная F(x), то , и сходимость интеграла определяется наличием или отсутствием конечного предела . Будем писать просто , имея в виду, что если соответствующий предел конечен, то интеграл сходится, в противном случае - расходится.

 

Особенность на правом конце промежутка интегрирования. Пусть функция f(x) определена на полуинтервале [a, b), интегрируема по любому отрезку , и имеет бесконечный предел при . Несобственным интегралом от f(x) по отрезку [a, b] называется предел . Если этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится.

Особенность во внутренней точке промежутка интегрирования. Пусть функция f(x) определена на отрезке [a, b], имеет бесконечный предел при стремлении аргумента к какой-либо внутренней точке c этого отрезка: , интегрируема по любому отрезку, не содержащему точку c. Несобственным интегралом от f(x) по отрезку [a, b] называется . Интеграл сходится, если оба эти пределы существуют и конечны, в противном случае интеграл расходится.

Несколько особенностей на промежутке интегрирования. Этот случай сводится к предыдущим. Пусть, например, функция имеет бесконечные пределы при стремлении аргумента к внутренним точкам c1, c2, c3 отрезка [a, b] (a < c1 < c2 < c3 < b) и правому концу b, и интегрируема по любому отрезку, не содержащему эти точки. Тогда несобственный интеграл определяется как . Здесь d1, d2, d3 - произвольные точки, удовлетворяющие неравенствам a < c1 < d1 < c2 < d2 < c3 < d3 < b.

Пример:
21.

, и интеграл расходится, так как все три предела бесконечны. Решение с применением формулы Ньютона-Лейбница: - расходится, так как первообразная обращается в бесконечность в точке x = -1.


На главную