Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Функция нескольких переменных и ее частные производные

Определение функции нескольких переменных

Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Обозначается: z = f (x, y) или z = z (x, y).

Пример. .

Аналогично определяются функции трёх и более переменных.

Примеры.  – функция трёх переменных;

  – функция n переменных.

Общее название: функции нескольких переменных (ФНП).

Частные производные ФНП

Ели одному из аргументов функции z = f (x, y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: – это частное приращение функции z по аргументу x; – это частное приращение функции z по аргументу у.

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:

– это частная производная функции z по аргументу x;

– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример.  Þ

Пример. .

Аналогично определяются функции трёх и более переменных.

Полное приращение и полный дифференциал ФНП

Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Функция z = f (x, y) называется непрерывной в точке (x, y), если бесконечно малым приращениям аргументов соответствует бесконечно малое полное приращение функции.

Если обозначить  – расстояние между близкими точками  и (х, у), то  – это определение непрерывности ФНП на языке приращений.

Если функция z = f (x, y) непрерывна в любой точке (х, у)ÎD, то она называется непрерывной ФНП в области D.

 Функция z = f (x, y), полное приращение Dz которой в данной точке (x, y) может быть представлено в виде суммы двух слагаемых: выражения, линейного относительно  и , и величины, бесконечно малой более высокого порядка малости относительно , называется дифференцируемой ФНП в данной точке, а линейная часть ее полного приращения называется полным дифференциалом ФНП.

Частные производные ФНП, заданной неявно

Если каждой паре чисел (x, y) из некоторой области DxOy соответствует одно или несколько значений z, удовлетворяющих уравнению , то это уравнение неявно определяет функцию 2-х переменных, например, функцию .

Если существуют частные производные функции F(x, y, z):  и , то существуют частные производные от функции z (x, y), которые можно вычислить по формулам:

.  (2)

Пример. Дано: . Найти  и .

Здесь . По формулам (2) находим:

 

Замечание. Если область D в декартовых координатах задается уравнением, содержащим бином , например, и т.д., то вычисление двойного интеграла по такой области удобнее производить в полярных координатах.

Геометрические приложения двойного интеграла

a) с помощью двойного интеграла вычисляют площади плоских фигур: – в декартовых координатах,

  – в полярных координатах;

б) двойной интеграл применяют для вычисления объемов тел. Пусть геометрическое тело ограничено с боков цилиндрической поверхностью с образующей, параллельной оси OZ, а сверху и снизу – поверхностями , где (x,y) D (D – проекция тела на плоскость OXY) (рис. 6).

Рис. 6

Тогда объем этого тела вычисляют с помощью двойного интеграла: .


На главную