Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Полное приращение и полный дифференциал ФНП

Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Функция z = f (x, y) называется непрерывной в точке (x, y), если бесконечно малым приращениям аргументов соответствует бесконечно малое полное приращение функции.

Если обозначить  – расстояние между близкими точками  и (х, у), то  – это определение непрерывности ФНП на языке приращений.

Если функция z = f (x, y) непрерывна в любой точке (х, у)ÎD, то она называется непрерывной ФНП в области D.

 Функция z = f (x, y), полное приращение Dz которой в данной точке (x, y) может быть представлено в виде суммы двух слагаемых: выражения, линейного относительно   и , и величины, бесконечно малой более высокого порядка малости относительно , называется дифференцируемой ФНП в данной точке, а линейная часть ее полного приращения называется полным дифференциалом ФНП.

Если , где  –бесконечно малые при , то полный дифференциал функции z = f (x, y) выражается формулой: , или:

 (1)

(приращения независимых переменных совпадают с их дифференциалами: Dх = dx, Dy = dy).

Из определения полного дифференциала следует его связь с полным приращением: при малых  и  полное приращение функции Dz примерно равно ее полному дифференциалу:  с точностью до бесконечно малых более высокого порядка малости относительно .

Полный дифференциал функции z = f (x, y) зависит как от точки M(x0, y0), в которой он вычисляется, так и от приращений  и .

Производные ФНП высших порядков

Пусть функция z = f (x, y) имеет в точке (x, y) и её окрестности непрерывные частные производные первого порядка  и . Так как  и  являются функциями тех же аргументов x и y, то их можно дифференцировать по x и по y. При этом возможны следующие 4 варианта:

– эти частные производные называются частными производными второго порядка от функции z (x, y).

Частные производные  и  называются смешанными частными производными второго порядка.

Пример. Дана ФНП . Вычислим все её частные производные второго порядка.

Основное свойство смешанных частных производных: если функция z = f (x, y) и её частные производные , ,  и  определены и непрерывны в точке (x, y) и некоторой её окрестности, то в этой точке =, то есть смешанные частные производные при условии их непрерывности не зависят от порядка, в котором производится дифференцирование.

Пример 1. Вычислить двойной интеграл по области D, где D – треугольник с вершинами в точках О(0,0), А(1,1) и В(0,2).

Решение. Построим область D и запишем уравнения линий, ограничивающих эту область (рис. 7).

Рис. 7

Уравнение ОА: ; отрезок ВА задается уравнением ; OB – .

.

Пример 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением .

Решение. Произведем замену переменных, полагая . Тогда уравнение кривой примет вид

, где .

Рис. 8

Тогда . С учетом того, что имеет период T = , .

С учетом симметрии фигуры вычислим площадь четвертой части и результат умножим на четыре.

Вычислим площадь по формуле .

.

Площадь всей фигуры, ограниченной данной линией, .


На главную