Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Решение примерного варианта контрольной работы №2

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Область D – правильная в направлении оси Oх, она задается системой неравенств:  где  – это уравнения линий, ограничивающих область слева и справа.

Найдем статический момент пластинки MNK относительно оси Ox по формуле (11):

.

Для вычисления двойного интеграла сводим его к повторному интегралу в соответствии с системой неравенств, задающих область D:

Ответы: Mx = 4,125 ед. стат. момента; область интегрирования на рисунке 11.

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области  D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

 Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл:

 Сделаем замену переменной в определенном интеграле:

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Решение.

Для проверки потенциальности векторного поля  найдем его ротор по формуле (19):

Следовательно, поле потенциально.

 Для проверки соленоидальности поля найдем его дивергенцию по формуле (17):

.

Следовательно, поле не соленоидально.

Функция нескольких переменных и ее частные производные

Отрицательное направление противоположно положительному.

Обратно, выбор положительного направления обхода контуров на поверхности задает выбор стороны этой поверхности.

Если поверхность состоит из нескольких частей, каждая из которых – двусторонняя поверхность, то можно соединить эти части в одну двустороннюю поверхность, согласовав ориентацию общих границ.

Например, в случае двух частей ориентация будет согласованной, если положительное направление движения по общей границе происходит от на поверхности и от на .

Это замечание позволяет говорить о внешней стороне замкнутой поверхности.

Например, для сферы:

- верхняя полусфера, внешняя нормаль составляет острый угол с осью z.

- нижняя полусфера. Внешняя нормаль составляет тупой угол с осью z.

и вместе составляют внешнюю сторону сферы. При этом положетельные направления обхода "экватора" противоположны друг другу на и на .

Площадь двусторонней поверхности. Сначала определим понятие площади поверхности , заданной уравнением , где - непрерывная функция, обладающая непрерывными производными в некоторой квадрируемой области .

Предположим, что мы рассматриваем разбиение этой поверхности на части непрерывными кривыми. Под диаметром множествапонимается точная верхняя грань расстояний между точками этого множества. Диаметр разбиения- это наибольший из диаметров получившихся частей.Обозначают его .

В каждой полученной части поверхности выберем точку и рассмотрим касательную плоскость к поверхности в этой точке. Пересечения касательных плоскостей ограничат многоугольники, которые образуют "панцирь" на поверхности. Этот "панцирь" состоит из плоских многоугольников и, следовательно, имеет площадь, равную сумме площадей его многоугольников.

Если при стремлении к 0 диаметра разбиения площади "панцирей" имеют конечный предел, то он и называется площадью поверхности. Это определение позволяет легко найти формулу для вычисления площади поверхности. Рассмотрим плоский многоугольник, нормаль к которому имеет направляющие косинусы . Можем считать, что .

Без ограничения общности, достаточно рассматривать прямоугольник, причем, для простоты, считаем, что его проекция на плоскость есть прямоугольник со сторонами , а сам он имеет стороны .

Тогда и (). В общем случае .

Если нормали выбирались в точках , то пусть - их направляющие косинусы. Согласно сказанному выше, площадь "панциря" есть . Эта сумма является интегральной суммой для двойного интеграла . Как установлено в §1, , поэтому .


На главную