Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

, .

Ответы: , .

 Задача 5. Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0. Требуется:

найти поток поля  через плоскость треугольника АВС где А, В, и С – точки пересечения плоскости d с координатными осями, в направлении нормали плоскости, ориентированной «от начала координат»; построить чертеж пирамиды ОАВС, где О – начало координат;

используя формулу Остроградского-Гаусса, вычислить поток поля   через полную поверхность пирамиды ОАВС в направлении внешней нормали.

Решение.

Чтобы вычислить поток поля  через плоскость треугольника АВС используем формулу (16): ПАВС =, где D – проекция треугольника АВС на плоскость xOy, F – функция, задающая плоскость d, которой принадлежит треугольник АВС.

Для построения чертежа найдем точки А, В, и С пересечения плоскости d  с координатными осями:

.

Построим чертеж пирамиды, отложив на координатных осях точки А, В, С и соединив их с началом координат O (рис. 12).

Из уравнения плоскости d: 3x + y + 2z – 3 = 0, которое имеет вид F(x, y, z) = 0, находим

 .

Поскольку все три проекции градиента положительные, то этот вектор образует с координатными осями острые углы, т.е. направлен «от начала координат» по отношению к плоскости d.

Это означает, что вектор  и орт «внешней» нормали , указанный в задаче, совпадают по направлению, поэтому вычисление потока через плоскость треугольника АВС сводится к вычислению двойного интеграла:

ПАВС = + (перед интегралом ставим знак «+»), где AOВ – проекция треугольника ABC на плоскость xOy.

 Для расстановки пределов интегрирования по треугольнику AOВ (рис. 13) найдем уравнение прямой АВ на плоскости xOy:

 Вычислим  и получим подинтегральную функцию, подставив = 2 и  (из уравнения плоскости):

.

Таким образом, поток поля  через плоскость треугольника АВС:

.

Вычислим внутренний интеграл по переменной y:

Вычислим внешний интеграл по переменной х:

.

 2) Чтобы вычислить поток поля  через полную поверхность пирамиды ОАВС, воспользуемся формулой Остроградского-Гаусса:

.

 Найдем дивергенцию этого поля по формуле (17): . Для поля  получаем:

.

 Вычислим поток поля  через полную поверхность пирамиды ОАВС:

, где   – объем пирамиды ОАВС. Этот объем можно вычислить, следующим образом:

.

В результате получаем: .

Ответы: 1) ПABC = 8,5, рисунок 12; 2) ПОАВС = –2,25.

Следствие 1. Если область G можно представить как в виде трапеции , где - непрерывно дифференцируемые на функции, так и в виде , где - непрерывно дифференцируемые на функции, L - граница G, причем при ее обходе область G остается слева, то .

Примечание. Области, удовлетворяющие условиям следствия 1 - явление обычное. Например, круг , ограниченный окружностью , можно задать так: , а можно и так: .

Следствие 2. Если область G можно разбить кривыми на конечное число областей, удовлетворяющих условиям следствия 1 и L - граница G, причем направление обхода выбрано так, что область G остается слева, и P и Q удовлетворяют перечисленным выше условиям, то .

Доказательство. Ограничимся случаем, когда область G разбивается на 2 части , удовлетворяющие условиям следствия 1, кривой . Пусть ограничивает , а ограничивает . Тогда, поскольку - это часть L и кривая , а - остаток L и кривая , но проходимая в противоположном направлении (поэтому интегралы по этим добавленным участкам сократятся).

Замечание. Можно доказать формулу Грина для областей, ограниченных замкнутыми кусочно-гладкими кривыми.


На главную