Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Функции комплексной переменной

Пример 1. . Здесь  = x iy – число, сопряженное числу z= x+iy.

Выделим действительную и мнимую части ФКП:

 u = x2 y2 2xv = 2xy + 2y.

Вычислим значение функции w в точке z1 = 2 – 3i:

.

Тот же результат получаем непосредственной подстановкой:

.

Говорят, что ФКП f (z) = u(x, y) +iv(x, y) имеет предел в точке z0, равный числу A = a + ib, если . Обозначается: .

Существование предела ФКП w = f (z) при  в означает существование двух пределов: .

 ФКП f (z) = u(x, y) +iv(x, y) называется непрерывной в точке z0, если выполняется условие: .

 Непрерывность ФКП w = f (z) в точке z0 = x0 + iy0 эквивалентна непрерывности функций u(x, y) и v(x, y) в точке (x0, y0).

Дифференцирование ФКП. Аналитические ФКП

 

Пример 2. Проверить аналитичность ФКП  .

 Þ  u = x2y2 – 2xv = 2xy + 2y (см. пример 1). Проверим выполнение условий Коши-Римана:

.

Условия (10) не выполняются, следовательно, эта функция не является аналитической.

Пример 3. Проверить аналитичность ФКП .

Выделим действительную и мнимую части функции:

.

Проверим выполнение условий Коши-Римана:

.

Условия выполняются во всех точках, кроме особой точки (0, 0), в которой функции и u(x, y) и v(x, y) не определены. Следовательно, функция  аналитическая при .

 

Если функция w = f (z) аналитическая в области D, то ее производную  можно найти, используя правила дифференцирования, аналогичные правилам дифференцирования функции одной действительной переменной.

Пример 4. Вычислить значение производной функции  в точке

z0 = – 1+ i.

Функция  – аналитическая, а значит, дифференцируемая во всей своей области определения (см. пример 3). Ее производная:

.

Вычислим значение производной в точке z0 = – 1+ i:

Следовательно, .

Понятие можно определить независимым от координат способом. Для этого рассмотрим точку , окружим ее шаром радиуса и применим теорему Остроградского-Гаусса: , где - вышеупомянутый шар, а - внешняя сторона ограничивающей его сферы. К правой части применим теорему о среднем (учитывая непрерывность): , где - близкая к точка. При и мы можем определить дивергенцию равенством: , в правой части которого система координат не фигурирует.

Если считать вектором скорости жидкости, то - это плотность источника.

Циркуляция. Ротор. Пусть - контур с заданным направлением обхода, - векторное поле, - единичный вектор касательной к кривой. Определим циркуляцию как интеграл (смысл – работа силы вдоль контура ).

Введем систему координат. Пусть - направляющие косинусы , - координаты .

Тогда и циркуляция представляет собой интеграл .

Для заданного непрерывно-дифференцируемого поля определин ротор (или вихрь) этого поля: .

Легко проверить свойства ротора.

  1. , где под

понимаем векторное произведение.


На главную