Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Некоторые приложения тройных интегралов

 Если подынтегральная функция (x, y, z) º 1, то тройной интеграл от нее по области V  равен мере области интегрирования – объему пространственного тела, занимающего область V: .

Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

. (12)

 

Криволинейный интеграл II рода (по координатам)

Общий вид криволинейного интеграла II рода (по координатам):

,

где BC – это дуга пространственной линии от точки B до точки C с указанным на ней направлением,  P (x, y, z),  Q (x, y, z),  R (x, y, z) – некоторые функции, заданные во всех точках дуги BC.

В двумерном случае: , где BCxOy.

Если P (x, y), Q (x, y) – проекции на оси Ox и Oy вектора переменной силы , то

 А = (13)

– это работа силы  при перемещении точки ее приложения вдоль участка дуги BC.

Пусть кривая BC задана параметрически:  причем функции x (t) и y (t) – непрерывны и дифференцируемы по t, а tB, tC – значения параметра для начала и конца кривой (в точках B и C). Тогда

и вычисление криволинейного интеграла сводится к вычислению определенного интеграла по переменной t: [an error occurred while processing this directive]

.

Вспомним теперь теорему Стокса: , где - непрерывно дифференцируемые функции, - кусочно гладкая поверхность, - ее край, причем направление обхода относительно выбраной стороны является положительным.

Получим определение без использования системы координат. Пусть - точка, - плоскость, в которой лежит окружность радиуса с центром в . Тогда по теореме о среднем ввиду непрерывности подынтегральной функции. Здесь точка близка к . По теореме Стокса, или .

Ввиду произвольности выбора плоскости, получаем проекцию на произвольную ось . Это определяет и сам вектор.

16.Соленоидальное поле. Векторная трубка в соленоидальном поле

Определение.- соленоидальное поле, если .

Векторная линия обладает тем свойством, что в любой ее точке вектор касательной к линии совпадает с .


На главную