Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Решение примерного варианта контрольной работы №2

Задача Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы   при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Решение.

Для проверки потенциальности векторного поля  найдем его ротор по формуле (19):

Следовательно, поле потенциально.

 Для проверки соленоидальности поля найдем его дивергенцию по формуле (17):

.

Следовательно, поле не соленоидально.

Для нахождения потенциала U(x, y, z) векторного поля возьмем фиксированную точку В(0, 0, 0), текущую точку С(x, y, z) и вычислим криволинейный интеграл  по ломаной ВEKC, звенья которой параллельны осям координат и E(x, 0, 0), K(x, y, 0) (см. рис. 8). По формуле (20) получим:

Получили потенциал поля , где С – произвольная постоянная. Для проверки решения найдем градиент потенциала : . Следовательно, потенциал поля силы найден верно.

 Найдем работу векторного поля  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3) по формуле (21):

.

Ответы: поле  потенциально, не соленоидально; , где С – произвольная постоянная; работа А = –10.

Однако для вычисления градиента удобно его координатное представление. Из него, в частности, легко следуют свойства градиента.

  1. (

- дифференцируемая функция)

Пример. Найдем , где - модуль радиус-вектора.

и .

По формуле 5 из этого равенства следует:

Мы получили формулу для вычисления гдариента радиальной функции.

Рассмотрим теперь поверхность уровня скалярного поля , т.е. поверхность, задаваемую уравнением . Предположим, что - непрерывно дифференцируемая функция от . Тогда уравнение касательной плоскости в точке , лежащей на этой поверхности, имеет вид .

Координаты вектора градиента представляют собой коэффициенты этого уравнения. Поэтому - нормаль к касательной плоскости в т. и, по определению, нормаль к самой поверхности уровня в этой точке.


На главную