Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Метод Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример 1.13. Решить систему уравнений методом Гаусса:

 x + y - 3z = 2,

 3x - 2y + z = - 1,

 2x + y - 2z = 0.

Решение. Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

  ~ ;

б) третью строку умножим на (-5) и прибавим к ней вторую:

.

В результате всех этих преобразований данная система приводится к треугольному виду:

  x + y - 3z = 2,

 -5y + 10z = -7,

 - 10z = 13.

Из последнего уравнения находим z = -1,3. Подставляя это значение во второе уравнение, имеем y = -1,2. Далее из первого уравнения получим
x = - 0,7.

 

Пример 1.14. Решить методом Крамера систему уравнений: [an error occurred while processing this directive]

  x1 + x2 + x3 + x4 = 5,

 x1 + 2x2 - x3 + 4x4 = -2,

 2x1 - 3x2 - x3 - 5x4 = -2,

 3x1 + x2 +2x3 + 11 x4 = 0.

Решение. Главный определитель этой системы

D =  = -142 ¹ 0,

значит, система имеет единственное решение. Вычислим вспомогательные определители D i (i=), получающиеся из определителя D путем замены в нем столбца, состоящего из коэффициентов при xi, столбцом из свободных членов:

D 1 =  = - 142, D 2 =  = - 284,

D 3 =  = - 426, D 4 =  = 142.

Отсюда x1 = D 1/D = 1, x2 = D 2/D = 2, x3 = D 3/D = 3, x4 = D 4/D = -1, решение системы - вектор С=(1, 2, 3, -1)T.

Матричный метод

Если матрица А системы линейных уравнений невырожденная, т.е.
det A ¹ 0, то матрица А имеет обратную, и решение системы (5.3) совпадает с вектором C = A-1B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X=C, C=A-1B называют матричным способом решения системы, или решением по методу обратной матрицы.

Пример 1.15. Решить матричным способом систему уравнений

 x1 - x2 + x3 = 6,

 2x1 + x2 + x3 = 3,

  x1 + x2 +2x3 = 5.

Решение. Обозначим

A = , X = (x1, x2, x3)T, B = (6, 3, 5) T.

Тогда данная система уравнений запишется матричным уравнением AX=B. Поскольку D = det =5 ¹ 0, то матрица A невырождена и поэтому имеет обратную:

А-1 = 1/D .

Для получения решения X мы должны умножить вектор-столбец B слева на матрицу A: X = A-1B. В данном случае

A-1 =

и, следовательно,

= .

Выполняя действия над матрицами, получим:

  x1 = 1/5(1×6+3×3-2×5) = 1/5 (6+9-10) = 1,

 x2 = 1/5 (-3×6 +1×3 - 1×5) = 1/5 (- 18 + 3 + 5) = -2,

  x3 = 1/5 (1×6 - 2×3 + 3×5) = 1/5 (6 -6 + 15) = 3.

Итак, С = (1, -2, 3)T.

 

Пример 1.16. Исследовать систему уравнений и решить ее, если она совместна.

 x1 + x2 - 2x3 - x4 + x5 =1,

 3x1 - x2 + x3 + 4x4 + 3x5 =4,

 x1 + 5x2 - 9x3 - 8x4 + x5 =0.

Решение. Будем находить ранги матриц A и `A методом элементарных преобразований, приводя одновременно систему к ступенчатому виду:

~  ~ .

Очевидно, что r(A) = r(`A) = 2. Исходная система равносильна следующей, приведенной к ступенчатому виду:

  x1 + x2 - 2x3 - x4 + x5 = 1,

 - 4x2 + 7x3 + 7x4 = 1.

Поскольку определитель при неизвестных x1 и x2 отличен от нуля, то их можно принять в качестве главных и переписать систему в виде:

 x1 + x2 = 2x3 + x4 - x5 + 1,

 - 4x2 = - 7x3 - 7x4 + 1,

откуда x2 = 7/4 x3 + 7/4 x4 -1/4, x1 = 1/4 x3 -3/4 x4 - x5 + 5/4 - общее решение системы, имеющей бесчисленное множество решений. Придавая свободным неизвестным x3, x4, x5 конкретные числовые значения, будем получать частные решения. Например, при x3 = x4 = x5 = 0 x1= 5/4, x2 = - 1/4. Вектор C(5/4, - 1/4, 0, 0, 0) является частным решением данной системы.

Пример 1.17. Исследовать систему уравнений и найти общее решение в зависимости от значения параметра а.

 2x1 - x2 + x3 + x4 = 1,

 x1 + 2x2 - x3 + 4x4 = 2,

  x1 + 7x2 - 4x3 + 11x4 = a.

Решение. Данной системе соответствует матрица`А=. Имеем `А ~   ~ , следовательно, исходная система равносильна такой:

 x1 + 2x2 - x3 + 4x4 = 2,

 5x2 - 3x3 + 7x4 = a-2,

  0 = a-5.

Отсюда видно, что система совместна только при a=5. Общее решение в этом случае имеет вид:

x2 = 3/5 + 3/5x3 - 7/5x4, x1 = 4/5 - 1/5x3 - 6/5x4.


На главную