Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Пример 3.1. Составьте уравнения прямых, проходящих через точку A(3,1) и наклоненных к прямой 2x+3y-1 = 0 под углом 45o.

Решение. Будем искать уравнение прямой в виде y=kx+b. Поскольку прямая проходит через точку A, то ее координаты удовлетворяют уравнению прямой, т.е. 1=3k+b, Þ b=1-3k. Величина угла между прямыми y= k1 x+b1 и y= kx+b определяется формулой tgj = . Так как угловой коэффициент k1 исходной прямой 2x+3y-1=0 равен - 2/3, а угол j = 45o, то имеем уравнение для определения k:

(2/3 + k)/(1 - 2/3k) = 1 или (2/3 + k)/(1 - 2/3k) = -1.

Имеем два значения k: k1 = 1/5, k2 = -5. Находя соответствующие значения b по формуле b=1-3k, получим две искомые прямые: x - 5y + 2 = 0 и 5x + y - 16 = 0.

Пример 3.2.. При каком значении параметра t прямые, заданные уравнениями 3tx-8y+1 = 0 и (1+t)x-2ty = 0, параллельны ?

Решение. Прямые, заданные общими уравнениями, параллельны, если коэффициенты при x и y пропорциональны, т.е. 3t/(1+t) = -8/(-2t). Решая полученное уравнение, находим t: t1 = 2, t2 = -2/3.

Пример 3.4. Со станции ежедневно можно отправлять пассажирские и скорые поезда. Данные приведены в таблице.

Тип поезда

Количество вагонов в составе

плацкартных

купейных

мягких

Пассажирский

5

6

3

Скорый

8

4

1

Резерв вагонов

80

72

21

Записать в математической форме условия, не позволяющие превысить наличный парк вагонов при формировании пассажирских и скорых поездов, ежедневно отправляемых со станции. Построить на плоскости Oxy область допустимых вариантов формирования поездов.

Решение. Обозначим через x количество пассажирских поездов, а через y - количество скорых. Получим систему линейных неравенств: 5x + 8y £ 80, 6x + 4y £ 72, 3x + y £ 21, x ³ 0, y ³ 0.

Построим соответствующие прямые:

5x + 8y = 80, 6x +4y = 72, 3x + y = 21, x = 0, y = 0,

записав их уравнения в виде уравнений прямых в отрезках: x/16 + y/10 = 1, x/12 + y/18 = 1, x/7 + y/21 = 1, x = 0, y = 0.

Заштрихуем полуплоскости, удовлетворяющие данным неравенствам, и получим область допустимых значений:

 

Итак, количество скорых поездов не превышает 10, а пассажирских должно быть не более 7.

Пример 3.5. Имеются два пункта производства (A и B) некоторого вида продукции и три пункта (I, II, III) его потребления. В пункте А производится 250 единиц продукции, а в пункте В - 350 единиц. В пункте I требуется 150 единиц, в пункте II -240 единиц и в пункте III - 210 единиц. Стоимость перевозки одной единицы продукции из пункта производства в пункт потребления дается следующей таблицей.

Таблица 1

Пункт

производства

Пункт потребления

I

II

III

A

4

3

5

B

5

6

4

Требуется составить план перевозки продукции, при котором сумма расходов на перевозку будет наименьшей.

Решение. Обозначим количество продукции, перевозимой из пункта А в пункт I через x, а из пункта А в пункт II - через y. Так как полная потребность в пункте I равна 150 единицам, то из пункта В надо завезти (150 - x) единиц. Точно так же из пункта В в пункт II надо завезти (240 - y) единиц. Далее: производительность пункта А равна 250 единицам, а мы уже распределили (x + y) единиц. Значит, в пункт III идет из пункта А (250 - x -y) единиц. Чтобы полностью обеспечить потребность пункта III, осталось завезти 210 - (250 - x -y) = x + y - 40 единиц из пункта В. Итак, план перевозок задается следующей таблицей.

Таблица 2

Пункт

производства

Пункт потребления

I

II

III

A

x

y

250 - x - y

B

150 - x

240 - y

x + y - 40

Чтобы найти полную стоимость перевозки, надо умножить каждый элемент этой таблицы на соответствующий элемент предыдущей таблицы и сложить полученные произведения. Получим выражение:

S(x,y) = 4x + 3y + 5 (250 - x - y) + 5 (150 - x) +
+ 6 (240 -y) + 4 (x + y - 40) = - 2x - 4y +3280.

По условию задачи требуется найти минимум этого выражения. Но величины x и y не могут принимать произвольных значений. Ведь количество перевозимой продукции не может быть отрицательным. Поэтому все числа таблицы 2 неотрицательны:

x ³ 0, y ³ 0, 250 - x - y ³ 0, 150 -x ³ 0, 240 - y ³ 0, x + y - 40 ³ 0. (3.12)

Итак, нам надо найти минимум функции S(x,y) в области, задаваемой системой неравенств (2.12). Эта область изображена на рис.3 - она является многоугольником, ограниченным прямыми:

x = 0, y = 0, 250 - x - y = 0, 150 - x = 0, 240 - y = 0, x + y - 40 = 0.

Рис. 3.1.

Находим координаты вершин многоугольника: A (0,40), B (40,0), C (150,0), D (150,100), E (10,240), F (0,240). Очевидно, что функция S(x,y) принимает наименьшее значение в одной из вершин многоугольника CDEFKL.

В самом деле, выясним, где располагаются точки, в которых значения этой функции одинаковы (так называемые линии уровня функции
S (x,y) = -2x - 4y + 3280). Если значение функции S (x,y) равно c, где с - вещественная константа, то - 2x - 4y + 3280 = c. Но это уравнение прямой линии. Значит, для функции S линиями уровня являются прямые линии, которые параллельны друг другу при различных значениях c. Если линия уровня пересекает многоугольник, то соответствующее значение c не является ни наибольшим, ни наименьшим. Ведь немного изменив c, мы получим прямую, которая также пересекает многоугольник. Если же линия уровня проходит через одну из вершин, причем весь многоугольник остается по одну сторону от этой линии, то соответствующее значение c является наибольшим или наименьшим.

Итак, функция S (x,y) = -2x - 4y + 3280 принимает наименьшее значение на многоугольнике в одной из его вершин. Поскольку мы уже знаем эти вершины, то подставим соответствующие значения координат и найдем, что

 S (0,40) = 3120, S (40,0) = 3200, S (1,500) = 2980,

 S (150,100) = 2580, S (10,240) = 2300, S (0,240) = 2320.

Наименьшим из этих значений является 2300. Это значение функция принимает в точке E (10, 240). Значит, x = 10, y = 240. Подставляя эти значения в план перевозок (см. таблицу 2), получаем:

Таблица 3

Пункт

производства

Пункт потребления

I

II

III

A

10

240

0

B

140

0

210

Таким образом, из пункта А в пункт I надо перевезти 10 единиц продукции, из пункта А в пункт II - 240 единиц и т. д. Стоимость намеченного плана равна 2300.

Рассмотренная задача относится к большому классу задач, возникающих не только в экономике, но и в других областях человеческой деятельности. Задачи такого типа называются задачами линейного программирования.

Пример 3.6.

Рассмотрим формулу простых процентов:

S = P + I = P ( 1 + ni ).

В этой формуле I - это проценты за весь срок, P - первоначальная сумма, S - сумма, образованная к концу срока ссуды, i - ставка процентов в виде десятичной дроби. Начисленные проценты за один период ( месяц, квартал, год ) составят величину, равную Pi, за n периодов - Pni. Процесс роста суммы долга по формуле простых процентов легко представить графически. Перепишем S в виде S = P + Pni, откуда легко увидеть линейную зависимость между S и n, т. е. это уравнение прямой с угловым коэффициентом. Поскольку n - это независимая переменная, то, совместив ось On с горизонтальной осью, как это обычно и делается, а ось OS - c вертикальной осью, построим график функции S.

Рис. 3.2.


На главную