Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Кривые второго порядка: гипербола, парабола

Гипербола. Гиперболой называется геометрическое место точек, разность расстояний которых от двух данных фиксированных точек (фокусов) гиперболы есть одна и та же постоянная величина. Предполагается, что эта постоянная величина не равна нулю и меньше, чем расстояние между фокусами.

Простейшее уравнение гиперболы

Здесь a - действительная полуось гиперболы, b - мнимая полуось гиперболы.

Если 2c - расстояние между фокусами гиперболы, то между a, b и c существует соотношение

a2 + b2 = c2.

При b = a гипербола называется равносторонней. Уравнение равносторонней гиперболы имеет вид

x2 - y2 = a2.

Фокусы гиперболы лежат на ее действительной оси.

Эксцентриситетом гиперболы называется отношение расстояния между фокусами этой гиперболы к длине ее действительной оси. [an error occurred while processing this directive]

Асимптоты гиперболы - две прямые, определяемые уравнениями

Напомним, что асимптотой кривой, имеющей бесконечную ветвь, называется прямая, которая обладает тем свойством, что когда точка по кривой удаляется в бесконечность, ее расстояние до этой прямой стремится к нулю.

Кривые второго порядка: окружность, эллипс


Окружность. Окружностью называется геометрическое место точек, равноудаленных от одной и той же точки.

Уравнение окружности имеет вид

(x - a)2 + (y - b)2 = r2,

где a и b - координаты центра окружности, а r - радиус окружности. Если же центр окружности находится в начале координат, то ее уравнение имеет вид

x2 + y2 = r2.

Эллипс. Эллипсом называется геометрическое место точек, для которых сумма расстояний до двух фиксированных точек (фокусов) есть для всех точек эллипса одна и та же постоянная величина (эта постоянная величина должна быть больше, чем расстояние между фокусами).

Простейшее уравнение эллипса

где a - большая полуось эллипса, b - малая полуось эллипса. Если 2c - расстояние между фокусами, то между a, b и c (если a > b) существует соотношение

a2 - b2 = c2.

Эксцентриситетом эллипса называется отношение расстояния между фокусами этого эллипса к длине его большой оси

У эллипса эксцентриситет e < 1 (так как c < a), а его фокусы лежат на большой оси.

Определители и системы линейных алгебраических уравнений


Вычисление определителей основывается на их известных свойствах, которые относятся к определителям всех порядков. Вот эти свойства:

1. Если переставить две строки (или два столбца) определителя, то определитель изменит знак.

2. Если соответствующие элементы двух столбцов (или двух строк) определителя равны или пропорциональны, то определитель равен нулю.

3. Значение определителя не изменится, если поменять местами строки и столбцы, сохранив их порядок.

4. Если все элементы какой-либо строки (или столбца) имеют общий множитель, то его можно вынести за знак определителя.

5. Значение определителя не изменится, если к элементам одной строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число. Для определителей третьего порядка это свойство может быть записано, например, так:

6. Определитель второго порядка вычисляется по формуле

(1)

7. Определитель третьего порядка вычисляется по формуле

(2)

Существует удобная схема для вычисления определителя третьего порядка (см. рис. 1 и рис. 2).

По схеме, приведенной на рис. 1, произведения соединеных элементов берутся со своим знаком, а по схеме рис. 2 - с обратным. Величина определителя равна алгебраической сумме полученных шести произведений.

Основные задачи на плоскость


1. Общее уравнение плоскости

Ax + By + Cz + D = 0.(1)

Если в этом уравнении D = 0, то плоскость проходит через начало координат, и ее уравнение будет таким

Ax + By + Cz = 0.(2)

При C = 0 уравнение (1) примет вид

Ax + By + D = 0,(3)

и плоскость параллельна оси Oz.

При B = 0 уравнение (1) запишется в виде

Ax + Cz + D = 0.(4)

В этом случае плоскость параллельна оси Oy, а при A = 0 уравнение (1) приобретает вид

By + Cz + D = 0,(5)

и плоскость параллельна оси Ox.

Следует запомнить, что если плоскость параллельна какой-нибудь координатной оси, то в ее уравнении отсутствует член, содержащий координату, одноименную с этой осью. Если в уравнениях (3), (4) и (5) окажется, что D = 0, то эти уравнения имеют вид

Ax + By = 0,(6)
Ax + Cz = 0,(7)
By + Cz = 0.(8)

Уравнение (6) - уравнение плоскости, проходящей через координатную ось Oz; (7) - уравнение плоскости, проходящей через ось Oy, а (8) - уравнение плоскости, проходящей через ось Ox. Если в уравнении (1) A = 0 и B = 0, то оно приобретет вид

Cz + D = 0,(9)

и плоскость параллельна координатной плоскости xOy. При B = 0 и C = 0 уравнение (1) запишется в виде

Ax + D = 0,(10)

а определяемая им плоскость параллельна координатной плоскости yOz. При A = 0 и C = 0 получаем из (1)

By + D = 0,(11)

и плоскость (11) параллельна координатной плоскости xOz.


На главную