Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Обратная матрица. Матричные уравнения. Системы линейных алгебраических уравнений.

Задания для подготовки к практическому занятию

Прочитайте §3,4 лекций и предложенные примеры. Ответьте письменно на вопросы и решите задачи.

Примеры.

Даны матрицы:

1. Существуют ли обратные для данных матриц? Если да, найдите и выполните  проверку.

Решение: Матрица А квадратная, ее определитель равен , следовательно, А-1 существует. Матрица В квадратная, но ее определитель , следовательно, В-1 не существует. Матрица С размера 3´2, не квадратная, следовательно, С-1 не существует.

Найдем обратную матрицу для матрицы А. Прежде всего, транспонируем матрицу А:

.

Составим присоединенную матрицу из алгебраических дополнений к элементам матрицы АТ:

Вычислим обратную матрицу по формуле

.

Проверим: произведение матрицы и ее обратной должно быть единичной матрицей

,

что и требовалось доказать, т.е. матрица А-1 найдена верно.

Замечание: удобнее перемножать целочисленные матрицы, поэтому мы сначала перемножили матрицы  и А, а результат домножили на дробь. Этим приемом мы будем пользоваться и далее.

2. Решить матричные уравнения АХ=В и YА=В.

Решение: Уравнение АХ=В, если матрица А имеет обратную, решается по формуле Х=А-1В. Получаем:

 

Уравнение YА=В, если матрица А имеет обратную, решается по формуле Y=ВА-1. Получаем:

3. Записать систему линейных уравнений в виде матричного уравнения: 

Решение: Система линейных уравнений эквивалентна матричному уравнению АХ=В, где Х – столбец неизвестных; А – матрица коэффициентов при неизвестных в левых частях уравнений (необходимо следить за очередностью неизвестных в записи уравнения; если неизвестной в уравнении нет, значит, соответствующий коэффициент равен 0); В – столбец свободных коэффициентов:

; ;

4. Решить систему из п3 при помощи правила Крамера

Решение: Прежде всего, найдем определитель системы:

,

следовательно, система имеет единственное решение, которое можно найти по правилу Крамера. Для определения значения переменной х вычислим определитель , полученный из D заменой столбца коэффициентов при переменной х на столбец свободных коэффициентов:

, значит,   .

Аналогично, определитель  получаем из D заменой столбца коэффициентов при переменной y на столбец свободных коэффициентов:

,

.

Далее, определитель  получаем из D заменой третьего столбца на столбец свободных коэффициентов:

Таким образом, решением системы является тройка чисел (-1;1;1). Подстановкой в уравнения системы убеждаемся, что решение найдено верно.


Двойной интеграл. Его основные свойства и приложения

Мы будем рассматривать функции , определенные на квадрируемом (т.е. имеющем площадь) множестве . Если вспомнить теорию определенного интеграла, то мы начинали ее изложение с понятия разбиения отрезка . По аналогии, определим разбиение квадрируемого множества , как представление множества в виде объединения конечного числа квадрируемых частей, .

(Практически всегда представляет собой криволинейную трапецию или конечное объединение криволинейных трапеций. Можно считать, что и разбиение на части определяется с помощью непрерывных кривых, т.е. все - также криволинейные трапеции или их конечные объединения).

В одномерном случае мы рассматривали длины частей разбиения . В двумерном случае обобщение понятия длины будет площадь . Однако нам потребуется также и понятие диаметра. Эта величина определяется как точная верхняя грань расстояния между точками множества .

Определим диаметр разбиения как наибольший из диаметров частей этого разбиения.

Далее, как и в одномерном случае, выберем точки (было: ). Пусть имеет координаты . Важную роль в дальнейшем будет играть понятие интегральной суммы. Так же, как в одномерном случае, эта величина имеет простой геометрический смысл. Интегральная сумма равна объему тела, состоящего из цилиндров с высотой (для простоты считаем, что ) и основаниями - .


На главную