Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

ЗАДАНИЕ 25. Найти асимптоты и построить эскизы графиков функций:

а) y=ln+2; б) y=; в) y=.

ОБЩИЕ ЗАМЕЧАНИЯ. Вспомним определение асимптоты при x®¥: это прямая y=kx+b, для которой (f(x)  (kx + b)) = 0. Числа k и b можно найти по формулам k =; b =(f(x)  kx). Асимптота горизонтальна k=0 тогда и только тогда, когда существует конечный предел f(x), это и будет число b. Аналогично определяется асимптота при x®¥. Прямая x = a называется вертикальной асимптотой, если f(x) является бесконечно большой при x® a, то есть если f(x) =¥, и односторонней вертикальной асимптотой, если f(x) =¥ или f(x) =¥.

РЕШЕНИЯ.

а) y=ln+2. Область определения функции: x¥,1)(3,+¥). Функция является элементарной составлена из основных элементарных функций с помощью конечного числа арифметических действий и подстановок одной функции в другую. Отсюда следует, что функция непрерывна в каждой точке области определения.

Исследуем поведение функции при x®10 и при x®3+0  то есть в полуокрестностях граничных точек области определения:

ln+ 2 =  ln t + 2 = ¥

новая переменная t= положительна и стремится к 0 при x®10.

  ln+ 2=ln t + 2 = +¥.

В обоих случаях при стремлении  x к конечному значению y является бесконечно большой, откуда следует, что прямые  x=1 и x=3  односторонние вертикальные асимптоты.

Исследуем поведение функции при x®±¥:

ln+ 2 = ln+ 2 = ln 1 + 2 = 2;

предел при x®¥ такой же. Следовательно, в обоих случаях прямая y=2 является горизонтальной асимптотой.

Ответ. Эскиз графика изображён на рис.36.

б) y=. Область определения функции: x¥,) (,)  (,+¥). Функция непрерывна в каждой точке области определения. При x®± по правилу вычисления предела дроби будем иметь: =¥, так как A 0. Отсюда следует, что прямые x= являются вертикальными асимптотами. Знак перед символом ¥ определяется знаком заданной дроби вблизи точек ±слева и справа. Метод интервалов применить не удаётся, так как корни числителя найти трудно. Поступим по - другому. Числитель в точке x= равен 3+1 > 0 и сохраняет знак в некоторой окрестности точки, так как является непрерывной функцией. Знаменатель отрицателен слева от точки x= и положителен справа. Итак,

y(x) = ¥, y(x) = +¥.

Числитель в точке x = равен 3+1 < 0 и сохраняет знак в некоторой окрестности точки. Знаменатель положителен слева от точки x= и отрицателен справа. Итак,

y(x) = +¥, y(x) = ¥.

Перейдём к изучению поведения функции при x®¥. Разница в показателях степеней многочленов в числителе и в знаменателе равна 1, что говорит о наличии асимптот при x® +¥ и при x®¥. В этой задаче найти асимптоты легче всего делением многочлена на многочлен, нахождением целой части. Выполнив деление, получим: = x + 1 +. Прямая y = x + 1 и будет асимптотой, что следует прямо из определения асимптоты:

(f(x)  (x + 1)) == 0, причём это справедливо как при x® +¥, так и при x®¥. Конечно, можно было найти асимптоту y=kx+b и с помощью вычислений:

k===1;

b=( x) ==1.

Ответ. Эскиз графика изображён на рис.37.

в) y=. Область определения функции: x , 2) (2, 2)  (2,+¥ ). Всюду в области определения функция непрерывна как элементарная заметим, что ½x½=,то есть  элементарная функция. Заметим, что функция чётная и рассмотрим её при x >0, здесь знак модуля можно убрать, так как при x >0 ½x½= x. Так, при x >0

y==  =  (x+2  ) =  x  2 + .

Найдена наклонная асимптота при x® +¥ : y =  x  2.

Прямая x = 2 является вертикальной асимптотой. График функции симметричен относительно оси y; y(0) =  7.

Ответ. Эскиз графика изображён на рис.38. [an error occurred while processing this directive]

 Рис.36 Рис.37 Рис.38

ЗАДАНИЕ 26. Провести полное исследование поведения функции и построить её график:

а) y = ; б) y = (x 1); в) y =.

ОБЩИЕ ЗАМЕЧАНИЯ. План полного исследования поведения функции может быть, например, таким:

Область определения.

Чётность , нечётность, периодичность.

Непрерывность. Поведение в окрестности точек разрыва и у границ области определения. Вертикальные асимптоты.

Асимптотическое поведение при x®¥. Наклонные или горизонтальные асимптоты.

Интервалы монотонности, экстремумы.

Интервалы выпуклости и вогнутости, точки перегиба графика.

Точки пересечения с осями координат.

б) y = (x 1). Область определения: x¥ ,1)  (1,+¥ ). Чётность, нечётность, периодичность отсутствуют. Функция непрерывна всюду, кроме точки x = 1. Для выяснения поведения функции в окрестности точки разрыва вычислим односторонние пределы:

  = ¥= +¥ ;

(x 1)= 2e- ¥ = 20 = 0,

(x 1)= 2e+ ¥ = 2+) = ¥.

Делаем вывод о наличии односторонней вертикальной асимптоты x = 1. Переходим к изучению поведения функции при x®¥.

(x 1) = ¥e0 = &

Определители 2-го и 3-го порядков. Определители n-го порядка и их свойства.

Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной), если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени.

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ   обозначает подстановку, в которой 3 переходит в 4, 1 ® 2, 2 ® 1, 4 ® 3. Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде ,т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

.  (1.3)

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

, (1.4)

где индексы q1, q2,..., qn составляют некоторую перестановку из чисел
1, 2,..., n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (- 1)q, где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ êA ê=  или det A=  (детерминант, или определитель, матрицы А).


[an error occurred while processing this directive]