Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Неопределенный интеграл. Табличное интегрирование.

Задания для подготовки к практическому занятию

Прочитайте лекции §16 и §17.1 и приведенные ниже примеры. Ответьте письменно на вопросы и решите задачи.

Выучите основную таблицу интегралов.

Примеры

1. Проверьте, верно ли найден интеграл:

Решение. Произвольное постоянное слагаемое С – непременный атрибут любого неопределенного интеграла. Чтобы проверить, верно ли найдена первообразная функция в правой части данного равенства, следует найти ее производную:

.

Поскольку полученная производная не совпадает с подынтегральной функцией , значит, интеграл найден не верно.

(Заметим впрочем, что исправить ситуацию в данном случае легко, домножив правую часть данного равенства на : .)

 Вычислить интегралы:

2. ;  3. ; 4.; 5.

Решение:

2. Данный интеграл является табличным (№10) с точностью до постоянного множителя 2 перед х2:

3. Представим дробь под интегралом в виде суммы, разделив почленно числитель на знаменатель: [an error occurred while processing this directive]

.

4. Чтобы свести данный интеграл к табличным, применим простые тригонометрические преобразования:

5. Интеграл отличается от табличного (№3) линейной заменой (5-3х вместо х). Воспользуемся правилом линейной замены (§17.1):

.

Примеры

1. Проверьте, верно ли найден интеграл:

Решение. Произвольное постоянное слагаемое С – непременный атрибут любого неопределенного интеграла. Чтобы проверить, верно ли найдена первообразная функция в правой части данного равенства, следует найти ее производную:

Замена переменной; интегрирование по частям

Задания для подготовки к практическому занятию

Если дробь неправильная, то есть степень числителя не меньше степени знаменателя, следует числитель разделить на знаменатель, выделив целую часть.

Пример . Вычислить .

Так как дробь неправильная, выделим целую часть. Делить будем в столбик, примерно так, как делят числа: так, чтобы все время уничтожалась наивысшая степень делимого, для этого каждый раз элемент частного получается делением старшей степени делимого на старшую степень делителя:

Замечание. Если область задана неравенствами , где - непрерывные функции, то

Сформулируем общую теорему о замене переменных.

Теорема. Пусть отображение устанавливает взаимно однозначное соответствие между областями и , причем функции - непрерывно дифференцируемые и ни в одной точке . Пусть - непрерывная на функция. Тогда

Как и для двойного интеграла, теорема остается верна в случае нарушения ее условий на множестве нулевого объема.

5.Тройной интеграл в цилиндрических и сферических координатах

Переход к цилиндрическим координатам. Он осуществляется с помощью функций: .

При этом якобиан равен .

Переход к сферическим координатам осуществляется функциями .

Якобиан преобразования равен (разложение по 3-й строке) (выделим общие множители у столбцов) .


На главную