Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Атомная энергетика Ядерные реакторы История искусства На главную

А если завтра контрольная?

Перейдём к вычислению моментов инерции тела относительно координатных осей. Так как квадраты расстояний от точки P(x, y, z) до осей Ox, Oy, Oz соответственно равны  то полагая для простоты  получим следующие формулы :

Аналогично плоскому случаю интегралы

называются центробежными моментами инерции. Ряды с неотрицательными членами. Типовой расчет по высшей математике Интегрирование

Для полярного момента инерции формула имеет вид

Если тело неоднородное, то в каждой формуле под зна­ком интеграла будет находиться дополнительный множитель  - плотность тела в точке P.

Пример. Вычислим полярный момент инерции однородного шара радиуса R. В этом случае очень удобно перейти к сфери­ческим координатам. Будем иметь

где М—масса шара.

Так как для сферы моменты инерции относительно осей коор­динат, очевидно,  равны между собой, то, учитывая,  что  получим

Моменты инерции тела относительно оси играют важную роль при вычислении кинетической энергии тела при его вращении около соответствующей оси. Пусть тело  вращается около оси Оz с постоянной угловой скоростью . Найдем кинетическую энер­гию  тела. Как известно, кинетическая энергия точки измеря­ется величиной , где т - масса точки, а  - величина ее скорости. Кинетическая энергия системы точек определяется как сумма кинетических энергий отдельных точек, а кинетическая энергия тела - как сумма кинетических энергий всех частей, на которые оно разбито. Это обстоятельство позволяет применить для вычисления .кинетической энергии интеграл.

Возьмем какую-нибудь окрестность  точки Р(х, у, z) тела . Величина линейной скорости  точки Р при вращении около оси Оz равна     и значит, кинетическая энергия части  тела  выразится так :

где  - плотность тела в точке Р. Для кинетиче­ской энергии всего тела  получаем

т.е.

Кинетическая энергия тела, вращающегося около некоторой оси с постоянной угловой скоростью, равна половине квадрата угловой скорости, умноженной на момент инерции тела относительно оси вращения.

Формула Ньютона-Лейбница для несобственного интеграла. В приведённых примерах мы сначала вычисляли с помощью первообразной функции определённый интеграл по конечному промежутку, а затем выполняли предельный переход. Объединим два этих действия в одной формуле. Символом будем обозначать ; символом - соответственно, ; тогда можно записать , , , подразумевая в каждом из этих случаев существование и конечность соответствующих пределов. Теперь решения примеров выглядят более просто: - интеграл сходится; - интеграл расходится.

Для несобственных интегралов применимы формулы интегрирования по частям и замены переменной: ; при замене переменной несобственный интеграл может преобразовываться в собственный. Так, например, вычислим интеграл: . Пусть , ; если , то ; если то ; Поэтому (это уже собственный интеграл) = .

Признаки сравнения для неотрицательных функций. В этом разделе мы будем предполагать, что все подынтегральные функции неотрицательны на всей области определения. До сих пор мы определяли сходимость интеграла, вычисляя его: если существует конечный предел первообразной при соответствующем стремлении ( или ), то интеграл сходится, в противном случае - расходится. При решении практических задач, однако, важно в первую очередь установить сам факт сходимости, и только затем вычислять интеграл (к тому же первообразная часто не выражается через элементарные функции). Сформулируем и докажем ряд теорем, которые позволяют устанавливать сходимость и расходимость несобственных интегралов от неотрицательных функций, не вычисляя их.
. Признак сравнения. Пусть функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и при удовлетворяют неравенствам . Тогда:
если сходится интеграл , то сходится интеграл ;
если расходится интеграл , то расходится интеграл
(эти утверждения имеют простой смысл: если сходится интеграл от большей функции, то сходится интеграл от меньшей функции; если расходится интеграл от меньшей функции, то расходится интеграл от большей функции; в случаях, когда сходится интеграл от меньшей функции или расходится интеграл от большей функции, никаких выводов о сходимости второго интеграла сделать нельзя).
Док-во: если , , то функции и - монотонно возрастающие функции верхнего предела b (следствие свойств аддитивности и интегрирования неравенств). Монотонно возрастающая функция имеет конечный предел тогда и только тогда, когда она ограничена сверху. Пусть сходится. G(b) ограничена , F(b) ограничена, т.е. сходится. Пусть расходится F(b) неограничена G(b) неограничена, т.е. расходится.
Примеры: Исследовать на сходимость интегралы
5. . Функция не имеет первообразной, выражающейся через элементарные функции, поэтому исследовать сходимость с помощью предельного перехода невозможно. При имеет место ; интеграл сходится сходится.
6. . При ; интеграл расходится расходится расходится.
В качестве "стандартного" интеграла, с которым сравнивается данный, обычно берётся интеграл типа , часто называемый интегралом Дирихле. Этот интеграл сходится, если p > 1, и расходится, если :


На главную