Математика Электротехника Лабораторные по электронике Строительная механика Машиностроительное черчение Выполнение сборочного чертежа Атомная энергетика Ядерные реакторы История искусства На главную

Черчение Примеры построения чертежей

Пример 1. Построить проекции прямого геликоида. Геометрическая часть определителя прямого геликоида F (i, m), где i – ось, m - направляющая винтовая линия (рис. 2.28). Алгоритмическая часть определителя:

li Ç i, li Ç m, li ^ i, т.е. все образующие являются горизонтальными прямыми. Линия а(а2) Ì F , а1 =?

1. Дискретный каркас строим из 13 образующих, поэтому на горизонтальной проекции винтовой линии т берем 13 точек (рис. 2.29). Рис. 2.28

Строим горизонтальную проекцию линии a, принадлежащей поверхности (рис. 2.30). На a2 отмечаем точки, принадлежащие образующим, и находим их горизонтальные проекции. Между образующими 6 и 5, 7 и 6 проведены дополнительные образующие, так как образующая, проведенная из точки 6, занимает проецирующее положение. Таким образом находим горизонтальную проекцию линии а, кривую а1.

 Рис. 2.29 Рис. 2.30

4.2.4. Методические рекомендации к решению задачи № 3

Чтобы решить позиционную задачу, нужно ответить на три вопроса: Трение в кинематических парах Природа и виды трения При работе машин и механизмов происходит явление, которое сопровождается рассеиванием механической энергии.

1. Что? Определить, что будет являться общим элементом пересекающихся геометрических фигур (точки, ломаная линия, контур из плоских кривых, пространственная кривая и т. д.).

2. Сколько? Нужно знать характер пересечения геометрических фигур (чистое проницание, частный случай проницания – касание, вмятие).

3. Как? Выбрать соответствующий алгоритм решения, т.е. определить расположение пересекающихся геометрических фигур относительно плоскостей проекций (1 алгоритм, 2 алгоритм или 3 алгоритм).

Примеры решения 2 ГПЗ в случае, когда одна из пересекающихся фигур проецирующая, вторая – непроецирующая. 2 алгоритм

Пример 1 . Построить проекции линии пересечения поверхностей сферы S и цилиндра вращения - L -. S Ç L = т (рис. 3.1).

Алгоритм решения:

S Ç L = т, 2 ГПЗ

L // П1, S – непроецирующая Þ 2 алгоритм

L // П1Þ m 1 =L1 ; m 2 Ì S2

Сначала строим две проекции сферы и недостающую проекцию цилиндра вращения (рис. 3.2).

 Рис. 3.1 Рис. 3.2

Вид пересечения – проницание. Значит, линий пересечения будет две:

S Ç L = m, . Обе поверхности являются поверхностями вращения второго порядка. Следовательно, при их пересечении получатся пространственные кривые второго порядка.

Решение.

Поверхность цилиндра L - проецирующая относительно П1, следовательно, горизонтальные проекции двух пространственных кривых линий пересечения совпадают с горизонтальной проекцией (главной проекцией) цилиндра

m1 , = L1

Фронтальные проекции обеих линий строим по принадлежности поверхности сферы.

1. Начинать построение фронтальных проекций линий пересечения следует с главных точек. Такими являются точки 1 и 7 как высшие и низшие точки, лежащие в общем осевом сечении поверхностей вращения (горизонтальная проекция); точки 2, и 8, как самые ближние и дальние; точки 5, и 11, как точки, лежащие на границе видимой и невидимой частей линий пересечения (рис. 3.3). Выбираем несколько промежуточных точек.

  Рис. 3.3

2. Для построения фронтальных проекций точек проводим окружности – параллели на поверхности сферы. Например, проводим окружность через точки 11 и 31 (рис. 3.4). Горизонтальная проекция такой окружности вырождается в отрезок прямой, перпендикулярный оси сферы. Радиусом, равным половине этого отрезка, строим ее фронтальную проекцию, которая на П2 изображается в истинном виде. Точки 12 и 32 принадлежат этой окружности.

 

 

 

 

 

Пример. Построить проекции конуса вращения Ф(i,l), у которого ось вращения занимает положение горизонтали

Построить проекции линии пересечения поверхности эллипсоида вращения S с призматической поверхностью L

Построить проекции точек пересечения отрезка прямой а c октаэдром

Расчет статически неопределимых балок. Общие понятия и метод расчета.    До сих пор мы рассматривали только статически определимые балки, у которых три опорные реакции определялись из условий равновесия. Очень часто, по условиям работы конструкции, оказывается необходимым увеличить число опорных закреплений; тогда мы получаем так называемую статически неопределимую балку.

Амплитудой колебания называется наибольшее отклонение точки от равновесного положения. Амплитуда гармонического постоянна. 

Построить проекции точек пересечения отрезка прямой а с поверхностью тора

Построить чертеж кондуктора

Построить чертеж корпуса

Построить чертеж прокладки.

 

Аналогично строим проекции всех остальных точек (и характерных и промежуточных) на П2.

Соединять построенные точки нужно в той же последовательности, что и на горизонтальной плоскости проекций, плавной кривой тонкой линией с последующей лекальной обводкой.

3. Решая вопрос видимости искомых линий относительно соответствующей плоскости проекций, надо помнить, что линии пересечения принадлежат обеим поверхностям одновременно. Поэтому видимыми будут те участки линий, которые лежат в зоне видимости обеих поверхностей относительно данной плоскости проекций (рис. 3.5).

Относительно П2 в зоне видимых точек будут лежать точки 11, 12, 1, 2, 3, 4, 5. Участки кривых, лежащих между точками 5, 6 и 10, 11, находятся в области видимых точек поверхности сферы, но невидимых точек поверхности цилиндра, поэтому будут невидимыми.

 

  Рис. 3.4

Рис. 3.5


На главную